

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATIO	QUALIFICATION: BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATISTICS											
QUALIFICATIO	N CODE: 07BSAM	LEVEL: 7										
COURSE CODE	: NUM701S	COURSE NAME: NUMERICAL METHODS 1										
SESSION:	JUNE 2023	PAPER: THEORY										
DURATION:	3 HOURS	MARKS: 100										

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER										
EXAMINERS	Dr S. N. NEOSSI NGUETCHUE AND G. S. MBOKOMA									
MODERATOR:	Prof S. S. MOTSA									

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations. All numerical results must be given using 4 decimals where necessary unless mentioned otherwise.
- 3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Attachments

None

Problem 1 [28 marks]

- 1-1. Write down the general formula of the Taylor's expansion with the Lagrange and the the integral remainder term respectively of a function f(x) about a point $x = x_0$. [6]
- 1-2. We want to generate the Taylor series of $f(x) = \sin(x)$ about $x_0 = 0$ in summation form. 1-2-1 Compute f' and f'' and show by induction on $k \in \mathbb{N}$ that

$$f^{(2k+1)}(x) = (-1)^k \cos(x)$$

- 1-2-2 Deduce the expression of the Taylor series of $f(x) = \sin(x)$ about $x_0 = 0$. [5]
- 1-3. Suppose that $g:[a,b] \to [a,b]$ is continuous on the real interval [a,b] and is a contraction in the sense that there exists a constant $\lambda \in (0,1)$ such that

$$|g(x) - g(y)| \le \lambda |x - y|$$
, for all $x, y \in [a, b]$.

Prove that there exists a unique fixed point in [a, b] and that the fixed point iteration $x_{n+1} = g(x_n)$ converges to it for any $x_0 \in [a, b]$. Also, prove that the error is reduced by a factor of at least λ from each iteration to the next.

Problem 2. [45 marks]

- **2-1.** Write down in details the formulae of the Lagrange and Newton's form of the polynomial that interpolates the set of data points $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$. [7]
- **2-2.** Use the results in **2-1.** to determine the Lagrange and Newton's form of the polynomial that interpolates the set of data points (1,1), (2,5) and (3,15). [18]
- 2-3. Determine the error term for the formula

[7]

$$f'''(x) \approx \frac{1}{2h^3} [3f(x+h) - 10f(x) + 12f(x-h) - 6f(x-2h) + f(x-3h)]$$

2-4. State the central difference formula to approximate $f''(x_0)$ and use it to approximate f''(0.5) when $f(x) = \ln(1+x)$ and h = 0.001. [5]

Problem 3. [27 marks]

The fourth-order Runge-Kutta (RK4) method to solve the IVP y'(t) = f(t, y), $y(t_0) = y_0$ using n steps is described by the following algorithm

Given
$$f, t_0, y_0, t_f, n$$
, let $h = (t_f - t_0)/n$

For
$$k = 0, 1, ..., n - 1$$

 $K1 = f(t_k, y_k)$
 $K2 = f(t_k + \frac{h}{2}, y_k + \frac{h}{2}K1)$
 $K3 = f(t_k + \frac{h}{2}, y_k + \frac{h}{2}K2)$
 $K4 = f(t_k + h, y_k + hK3)$
 $y_{k+1} = y_k + (h/6)[K1 + 2K2 + 2K3 + K4]$
 $t_{k+1} = t_k + h$

End For

3-1. Write down the RK4 algorithm for the following specific problem after n steps

$$y'(t) = y - t^2 + 1$$
, $y(0) = 2$

3-2. In the kingdom of Bana, king Happi The First asked one of his subjects, a prominent mathematician to solve the above IVP using the fourth-order Runge-Kutta (RK4) method. He displayed the results in the form of the following table and purposely skipped some entries.

k	t_k	k_1	k_2	k_3	k_4	y_k
1	0.08	3.0	3.11840		3.24345	2.24969
2	0.16		3.36502		3.49368	
3		3.49351	3.61885			2.80885
4		3.75125		3.88567	4.01730	
5	0.4		4.15061		4.29200	

Compute **only the missing values** by the means of the given ones (don't re-compute them!!). [20]

 _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_							_		_
																								T(T	AL	ı: :	100) m	arl	KS.	
													Go	od	bl	ess	s ye	ou	!!!													